```
Errata from Solar Sailing 2016 Feb 24<sup>th</sup>
Errata SS.docx
pxxy
page xx
y = t top of page
y = m middle of page
y = b bottom of page
Publisher's page m Misspelling of Heidelberg
p14m Change "between" to "among".
pl8t eq.1.3 I_{sp} = [\Delta v /g] [ln(1/R)]^{-1}
      eq.1.4 I_{sp} \sim [a_0 T/g] [ln(1/R)]^{-1}
p39m eq.2.22 (\cos^2\alpha)n
p44m eq. 2.44a should be P(r) = [P^{*}(r)][F(r)]
p48b eq.2.54 missing factor of "A" (area) on RHS.
p50t Fig.2.9 Forces on LHS of diagram are high by a factor of
two.
p53m Table 2.2 "C"s should be lower case. c_1 c_2 c_3
p53b "nett" is British for "net"
p67t Fig. 3.5 Script "1" on diagram and Roman "1" of text
      are the same.
       Script 1 \approx \lambda_{IR}/4 is length of radiator. Replace "1"
      of eqs. with "l".
      Change "between" to "among".
p83b
P87m Eq.3.34b is missing a factor of R on RHS.
       Diagonal arrow from lower edge points wrong direction.
p95t
p113b Eq. 4.1 should be \mathbf{R} = (M\mathbf{r_1} + m\mathbf{r_2}) / (M + m).
       Below eq.4.2b should read "adding" not "subtracting".
pl18b Eq.4.13a \cos^3 \alpha, and eq.4.13 \cos^2 \alpha
p121m "nett" is British for "net". A German finds it nice
       as it is.
p122m Should be ordinary < and >, not Karp symbol.
p125b 0 < \beta < 1/2 not karp symbol.
pl30m eq.4.37a First term on LHS is d^2r / dt^2
       eq.4.37b \cos^2 \alpha \sin \alpha
p130b eq.4.40a exponent on cosine should be 3, not 2. (\cos^3 \alpha)
        eq.4.40b exponent of 2 on \alpha should be on cos. (cos<sup>2</sup>\alpha)
p133m Eq. 4.51 should have \beta - (2/\cos^3\alpha) ( ... )
```

continued next page

province radie real and many errors. Terra co mars							
		Hohmann	$\beta = 0.05$	$\beta = 0.1$	$\beta = 0.125$	$\beta = 0.15$	$\beta = 0.1711$
a_0	mm/s^2	-	0.27	0.54	0.67	0.80	1.01
α	deg	-	34.84	34.39	34.15	33.91	0.0
γ	deg	-	2.27	4.66	5.91	7.19	varies
Т	days	259.	875.	431.	342.	283.	284.
Δv_1	km/s	2.95	1.24	2.52	3.18	3.85	0.0
Δv_2	km/s	2.65	1.00	2.04	2.57	3.12	4.58
Δv_{T}	r km/s	5.60	2.24	4.56	5.75	6.96	4.58

p134m Table 4.2 has many errors. Terra to Mars

If $\beta = 0.1711$, set $\alpha = 0$, perihelion will be at Mars orbit. p138t eq.4.12 +/p138m eq.4.58a "tan" should not be there, just α ~ on LHS p139b $f/2\pi$ not inverse p144m should $\cos f$ be $\cos (f + \omega)$? p148/149 Suspect printing errors. Should final [term] of eq.4.82a be [**n** • 2(**r**^•**n**)**r**^) ? No p174b eq.5.3b Missing - sign? p192t eq.5.50a (($\cos\alpha$)(ρ/r) - $\sin(z/r)$) eq.5.50b $((\sin\alpha)(\rho/r) + \cos(z/r))$ noting sign change p205 Karp symbols should be < and > . p212b Eq.5.113 lacks $(1/\cos^2 \varphi)$ in rightmost term per p202b. p216b $\mu = m_2 / (m_1 + m_2)$ p226m "occurs at a light" should be "occurs at a lightness" p275m Should be U/c << 1, without Karp symbol. Same at bottom of page, and on p276 and p278. P279m eq.7.26 P' = [dE'/dt'] = P[dE'/dE][dt/dt'] Correct? P280m eq. 7.33 $\beta(\tau) = (\tau - \tau_0)/\tau$